Second order hidden Markov models for place recognition: new results
نویسندگان
چکیده
Second order hidden Markov models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (neural networks . . . ) are their capabilities to model noisy temporal signals of variable length. In a previous work, we proposed a new method based on second order hidden Markov models to learn and recognize places in an indoor environment by a mobile robot, and showed that this approach is well suited for learning and recognizing places. In this paper, we propose major modifications to increase the global rate of places recognition. Results of experiments on a real robot with distinctive places are given.
منابع مشابه
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Employing Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments
Speaker identification performance is almost perfect in neutral talking environments. However, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing, and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environ...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملAutomatic word recognition based on second-order hidden Markov models
We propose an extension of the Viterbi algorithm that makes second-order hidden Markov models computationally efficient. A comparative study between first-order (HMM1’s) and second-order Markov models (HMM2’s) is carried out. Experimental results show that HMM2’s provide a better state occupancy modeling and, alone, have performances comparable with HMM1’s plus postprocessing.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998